
Medical Image Analysis 87 (2023) 102825

A
1

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Unpaired, unsupervised domain adaptation assumes your domains are
already similar
Gijs van Tulder a,b,∗, Marleen de Bruijne b,c

a Data Science group, Faculty of Science, Radboud University, Postbus 9010, 6500 GL Nijmegen, The Netherlands
b Biomedical Imaging Group, Erasmus MC, Postbus 2040, 3000 CA Rotterdam, The Netherlands
c Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark

A R T I C L E I N F O

Keywords:
Domain adversarial learning
Domain adaptation
Representation learning
Transfer learning

A B S T R A C T

Unsupervised domain adaptation is a popular method in medical image analysis, but it can be tricky to make
it work: without labels to link the domains, domains must be matched using feature distributions. If there
is no additional information, this often leaves a choice between multiple possibilities to map the data that
may be equally likely but not equally correct. In this paper we explore the fundamental problems that may
arise in unsupervised domain adaptation, and discuss conditions that might still make it work. Focusing on
medical image analysis, we argue that images from different domains may have similar class balance, similar
intensities, similar spatial structure, or similar textures. We demonstrate how these implicit conditions can
affect domain adaptation performance in experiments with synthetic data, MNIST digits, and medical images.
We observe that practical success of unsupervised domain adaptation relies on existing similarities in the data,
and is anything but guaranteed in the general case. Understanding these implicit assumptions is a key step in
identifying potential problems in domain adaptation and improving the reliability of the results.
1. Introduction

Modern deep learning methods for medical image analysis achieve
impressive results, but the models they produce often generalize poorly
to data from different scanners or different medical centers. This is
especially inconvenient in medical imaging because it can be time-
consuming and expensive to obtain the ground-truth annotations for
a new training set. Domain adaptation methods address this problem
by adapting models trained on data from one domain, the source, to
data from another, the target. If the domain adaptation step works
well, models trained for existing datasets can be applied to data from
new domains with only a limited performance loss. Similarly, domain
adaptation can be used to combine data from multiple sources in a
single model, either by modeling the differences between domains or
by reducing them.

1.1. Unsupervised domain adaptation

Domain adaptation comes in many shapes and forms (see Guan and
Liu, 2021, for a recent overview of applications in medical imaging).
In this paper we study unsupervised domain adaptation, which assumes
that labeled data is only available for the source domain. Some meth-
ods for unsupervised domain adaptation learn the translation between
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domains from paired data, such as scans of the same patient in different
scanners. Here, we investigate a more challenging setting: unsupervised
domain adaptation without paired samples.

Without information on individual sample pairs, the mapping be-
tween domains must be learned on a distribution level. To do this,
a common assumption is that although the data from the source and
target domains looks different, the underlying structure and tissue types
are quite similar. For example, a brain scan might look different in
different scanners, but the anatomical information is the same. This
correspondence can be exploited to learn a mapping between domains:
if the domains have similar underlying structure and tissue types, we
should expect the features and outputs to have a similar distribution as
well.

1.2. Image-to-image translation

Many unsupervised domain adaptation methods are based on image-
to-image translation: by translating images from the target domain to
the source domain, they can be analyzed using the existing classifiers
trained on source data. For example, the popular CycleGAN model (Zhu
et al., 2017) is optimized using a cycle-consistency loss, which mini-
mizes the reconstruction loss of a source–target–source translation, and
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Fig. 1. The adversarial domain adaptation model uses a separate encoding branch
for each domain. The output of these encoders is forwarded to a shared classification
network and to a domain discriminator. A domain adversarial learning objective is
applied to encourage the encoders to learn a shared, domain-invariant representation
space.

an adversarial loss that discriminates between real and translated target
images. An alternative approach for image-to-image translation uses
style transfer separate content and appearance information (Yang et al.,
2019; Chen et al., 2020b,b, 2021b).

Image-to-image translation is complex and relatively inefficient. The
translation model must translate all information in the images, but only
some of that information is useful to the subsequent classification or
segmentation model. Moreover, the focus on reconstruction loss may
remove useful information that is difficult to translate between im-
ages. In many cases, finding a perfect translation might be impossible.
For example, a translation between MRI and CT may only preserve
information that is captured by both modalities.

1.3. Learning domain-invariant representations

An alternative to image-to-image translation is domain adaptation
in feature space by learning domain-invariant representations. After
mapping domain-specific inputs to a common, domain-invariant fea-
ture representation, the same classifier or segmentation model can
be used for all domains. If the dataset contains paired samples, the
domain-specific mappings can be learned with a loss that compares the
representation of the same sample across domains. Without paired sam-
ples, the mappings can be learned by aligning the feature distributions
for both domains, e.g., using a distribution similarity metric such as the
Maximum Mean Discrepancy loss (MMD, Gretton et al., 2008), with
a variational autoencoder (Wu and Zhuang, 2021), or with Optimal
Transport (Ackaouy et al., 2020; Al Chanti and Mateus, 2021).

In this paper, we use the popular approach of domain adversarial
learning (Fig. 1) (Ganin et al., 2017). This method relies on a domain
discriminator that is trained to predict the domain of a sample given
its feature representation. By using this discriminator in an adversarial
learning objective for the feature encoding model, the encoder is en-
couraged to learn domain-invariant representations. Tzeng et al. (2017)
describe a general framework for adversarial discriminative domain
adaptation (ADDA) that covers many variants of this approach. Kam-
nitsas et al. (2017) present an early application of domain adversarial
learning to brain lesion segmentation.

We investigate the application of representation learning to unsu-
pervised domain adaptation with unpaired samples, where we assume
that labels are only available for the source domain and there is no
direct link between samples in the source and target domains. We
use domain adversarial learning to implement our domain adaptation
objective, but we believe that many of our conclusions also hold for
2

other methods.
1.4. Why does this even work?

Domain adversarial learning is a popular method in medical image
analysis (Guan and Liu, 2021), often with good results, but there
has been relatively little research into why it works. At first glance,
domain adversarial learning makes very few assumptions about the
data, and should be able to align any pair of domains just by matching
their feature distributions. In practice, we argue in this paper, aligning
distributions is not sufficient: there is usually more than one way to
match the domains, which means that additional assumptions about
the data are needed to find the correct solution.

In early work on this topic, Ben-David S. Blitzer et al. (2010a) and
Ben-David S. Luu et al. (2010b) explored the theoretical bounds of the
error of a domain adaptation model (Ben-David S. Blitzer et al., 2010a)
and discussed the assumptions for a successful domain adaptation
result (Ben-David S. Luu et al., 2010b). Most importantly, they suggest
that the unlabeled source and target distributions should be similar.
More recently, Zhao et al. (2019) provided a theoretical analysis of
domain adaptation by learning invariant representations, i.e., interme-
diate features which have a similar distribution in the source and target
domains. Zhao et al. (2019) show that in general, learning an invariant
representation and achieving a small error on the source domain is not
sufficient to guarantee a small error on the target domain, because the
labeling function may be different for both domains.

In this paper, we explore these themes from a medical imaging
perspective. We hypothesize that a successful domain adaptation using
adversarial learning requires explicit or implicit assumptions about the
data, or more specifically: assumptions about the similarities between
domains. We explore what these assumptions can be, and show why
they help to obtain useful domain adaptation results. We investigate
a number of data and model characteristics that often appear in med-
ical imaging and that might explain why medical domain adversarial
learning is successful. We explore these properties in several practical
experiments, comparing results for datasets with different properties
and different network architectures. We conclude that identifying these
implicit biases is a key step in obtaining reliable domain adaptation
results.

1.5. Outline

Section 2 presents an overview of related work in adversarial do-
main adaptation for medical images. Section 3 describes the unsuper-
vised domain adaptation approach. Section 4 discusses the problems
with this approach, and why it should not work in theory. Section 5
explains why it sometimes does work in practice. Section 6 introduces
the metrics used to evaluate the results. Section 7.1 describes the
technical implementation of the experiments. Section 7.2 shows the
experiments on a synthetic dataset, followed by Section 7.3 on MNIST
digits and Section 7.4 on two medical datasets. Sections 8 and 9 provide
a discussion and conclusion.

2. Related work

We summarize the main trends on adversarial domain adaptation
in a medical context. We discuss two approaches: image-level domain
adaptation, which translates images between domains, and feature-
level domain adaptation, the approach used in this paper, which learns
domain-invariant feature representations. Guan and Liu (2021) provide
a recent survey of domain adaptation in medical imaging, covering
adversarial learning and other methods.
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2.1. Image-level domain adaptation with a cycle-consistency loss

Many adversarial domain adaptation works use image-to-image
translation with a cycle-consistency loss, based on the CycleGAN
model (Zhu et al., 2017). Cohen et al. (2018) point out that this type
of image-to-image translation may not be ideal. They argue that distri-
bution matching is sensitive to differences in the sample distribution
between the source and target domains, which can lead to unrealistic
and incorrect translations. They illustrate this with a CycleGAN model
that adds spurious tumor patterns when translating between brain MRI
protocols. The CyCADA model (Hoffman et al., 2018) adds a semantic
consistency loss that aligns the translated image on a feature level or
on a task-specific level, such as the output of a classification model.

In medical imaging, the CycleGAN approach has been used for MRI-
to-CT image synthesis (Wolterink et al., 2017; Yang et al., 2018; Zhou
et al., 2021), multi-contrast MRI (Dar et al., 2019), fundus imaging (Ju
et al., 2021), chest X-ray (Li et al., 2020a), histopathology (de Bel et al.,
2021), and ultrasound (Zhou et al., 2021) images. The basic cycle-
consistency loss is sometimes extended with additional, application-
specific constraints, e.g., by encouraging structural or anatomical con-
sistency between domains (Cai et al., 2019; Chen et al., 2021a; Jiao
et al., 2020). Other works using CycleGAN align domains based on the
output of auxiliary tasks such as segmentation (Ren et al., 2021; Tomar
et al., 2021; Tomczak et al., 2021), or by directly matching feature
values (Chen et al., 2020a; Yu et al., 2020). Some other works use atlas
registration (Gao et al., 2019) or a student–teacher model with inter-
and intra-domain teachers (Li et al., 2020b.) to improve the results.

In general, the CycleGAN approach alone is not sufficient to learn
a reliable translation (Hoffman et al., 2018). Additional constraints,
and corresponding assumptions about the domains, are required to get
usable results. Recent publications show promising results with image-
to-image translation methods based on style transfer, as an approach
to separate content and appearance information. For example, Yang
et al. (2019) propose image-to-image translation with disentangled rep-
resentations, linking domains both on feature and image levels. Chen
et al. (2020b) use feature disentanglement to combine shape priors and
image appearance. Chen et al. (2021b) report good results by encod-
ing anatomical information separately from appearance information.
The utility of spatial similarities between domains is also recognized
by Wang and Zheng (2022), who observe that cross-domain image
translation can be improved by including a semantic segmentation task.
A recent challenge on unsupervised domain adaptation for cardiac MRI
segmentation (Zhuang et al., 2022) also reports good results for style-
transfer-based image-to-image translation methods. Like CycleGAN,
style transfer-based models usually assume that images in different
domains to have a similar spatial arrangement.

2.2. Feature-level domain adaptation

Adversarial domain adaptation by learning domain-invariant fea-
ture representations (Tzeng et al., 2017), without explicitly recon-
structing images from the target domain, is also commonly used for
medical image classification and segmentation. Kamnitsas et al. (2017)
presented an early version of this approach for brain lesion segmen-
tation. The method was later applied for many other tasks, such as
anatomical structure segmentation (Bian et al., 2020), multi-modal
brain MRI (Guan et al., 2021), colonoscopy images (Liu et al., 2021), or
fundus imaging (Shen et al., 2020). Instead of learning a fully domain-
invariant model, some approaches try to disentangle domain-invariant
and domain-specific features (Hu et al., 2020; Pei et al., 2021), which
allows them to exploit domain-specific information where necessary.

Feature-level domain adaptation can be extended with additional
constraints, e.g., by adding structural constraints on the output of
a segmentation model. Bateson et al. (2021) argue that adversarial
training may not be suitable for adapting segmentation networks,
3

and suggest using domain-invariant prior knowledge about common
anatomical structures to direct the adaptation. Similarly, Cui et al.
(2021) used several structural constraints to capture common cardiac
structure across MRI and CT. More indirectly, Wang et al. (2019)
applied an adversarial domain discriminator to a segmentation output.
Li et al. (2020b.) provided additional semantic feature maps to the
discriminator, to exploit domain-invariant spatial patterns.

Domain adaptation can also be guided by adding auxiliary tasks
to the learning objective. For example, Koohbanani et al. (2021) used
domain-specific pretext tasks in a self-supervision setup. Luo et al.
(2020) used task-specific discriminators to improve domain invari-
ance. Chen et al. (2019) proposed a combination of feature-level and
image-level methods.

As an alternative to adversarial matching of feature distributions,
some approaches minimize the distance between class and feature dis-
tributions of across domains using metrics such as the Kullback–Leibler
divergence or mutual information. For example, Bateson et al. (2020)
use this method to include a learned class-prior to match distributions
in a class-sensitive way. Liang et al. (2020) propose a classification-
based domain adaptation approach to obtain a similar class distribution
between domains.

3. Methods

3.1. Domain adaptation with a neural network

In this paper, we consider domain adaptation in a deep neural
network with the following architecture: an encoder that maps the
domain-specific input to a latent, domain-invariant feature represen-
tation, and a shared prediction model that uses the intermediate repre-
sentation to make a prediction. We use classification as the prediction
task in this paper, but this could also be a segmentation or regression
task. The domain adaptation in the encoder can take two forms: using
a single encoder that is used for both domains, or using a separate,
domain-specific encoder for each domain.

The first approach requires a single, common model that works well
for data from both domains. Since it uses the same feature extraction
path for both domains, it will automatically map both domains to
the same representation if the domains are fairly similar. However,
the approach provides limited flexibility to adapt to larger differences
between domains, and is likely to focus on domain-invariant features
that have similar appearance in both domains.

The second approach uses a separate encoding path for each do-
main. We use this architecture in this paper. In contrast to a shared
encoder, domain-specific encoders can accommodate large differences
between domains: if the encoders are complex enough, they can map
the inputs to a shared encoding that is common to both domains.
However, the increased power and flexibility also increase the risk that
the encoders learn inconsistent mappings, since there are no shared
features that link the two encoding branches. We will revisit this
limitation in Section 4.

3.2. Adversarial domain adaptation

The source encoder and the shared prediction model can be trained
with a supervised learning objective, computed on labeled data from
the source domain. To train the target encoder and learn a domain-
invariant feature representation, we need an unsupervised objective
based on the unlabeled target data and data from the source domain.
In this paper, we use an adversarial domain adaptation objective.

Adversarial learning (Goodfellow et al., 2014) is commonly used
to train generative models. A discriminator is trained to discriminate
between samples from a real distribution and samples generated by
a generator model. By optimizing the generator to maximize the loss
of the discriminator, the samples generated by the model will start to
resemble those from the real distribution.
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In domain adversarial learning (Ganin and Lempitsky, 2015; Tzeng
et al., 2017), the discriminator is presented with feature representations
of samples from the source and target domain, and is trained to predict
the domain of each sample. The discriminator loss is included as an
adversarial term in the learning objective for the encoders, which
encourages them to learn domain-invariant representations that have
similar distributions in both domains.

3.3. Architecture and learning objectives

Fig. 1 shows the model with domain-specific encoders as it is used
in this paper. We denote the domain-specific encoders as 𝐹src for the
source and 𝐹tgt for the target domain. Given an input 𝐱, we use the ap-
propriate encoder 𝐹 ∈

{

𝐹src, 𝐹tgt
}

to compute the representation 𝐹 (𝐱).
This representation is then used as input for a shared classification
model 𝐺 to compute the prediction �̂� = 𝐺 (𝐹 (𝐱)).

The learning objective consists of a classification component and a
domain-adversarial component. The classification component is com-
puted only for the source samples, using the ground-truth label 𝑦 to
compute the binary cross-entropy loss:

class = −𝑦 log �̂� − (1 − 𝑦) log (1 − �̂�) . (1)

A separate domain discriminator 𝐷 is used to encourage the two en-
coders to produce domain-invariant representations. The discriminator
is trained with a binary cross-entropy loss to predict the domain of a
sample given its intermediate feature representation:

disc =

{

− log𝐷
(

𝐹src (𝐱)
)

, if 𝐱 is from the source domain;
− log

(

1 −𝐷
(

𝐹tgt (𝐱)
))

, if 𝐱 is from the target domain.
(2)

We reuse this learning objective disc as an adversarial term in the
learning objective for the encoder.

During training, we optimize the encoder and classifier weights to
minimize the classification loss and maximize the discriminator loss:

combined = 𝜆classclass − 𝜆discdisc. (3)

4. Problem analysis

In the absence of paired samples, the domain adaptation model can
only compare domains at a distribution level. This has consequences
for the quality and correctness of the results.

4.1. Two phases of domain adaptation

For the following analysis, we will divide the unsupervised domain
adaptation task in two phases. First, the method must determine the
structure of the input space for each domain, e.g., by identifying
clusters of samples. Second, the method must match the structures in
both domains in order to map the feature representations of samples
from one domain to the other. If both phases are successful, the domain
adaptation will result in the correct classification on the target domain.

Our analysis is further based on the assumption that domain adapta-
tion learns a smooth mapping between domains: samples that are close
together in the target domain will most likely be mapped close together
in the source domain.

For simplicity, for this problem analysis, we will assume that the
samples in each domain can be grouped in a number of distinct clusters.
In practice, we may not be able to find perfectly distinct clusters in the
data – for example, because samples from different classes may have
very similar appearance and classes may overlap – but this will not
affect our general conclusion.

Ideally, each class would correspond to a single cluster in each do-
main, and the task of domain adaptation would be to link each cluster
to the correct cluster in the other domains. In practice, it is likely that
the classes are more heterogeneous and consist of multiple subclusters.
This complicates the task of the domain adaptation algorithm, which
4

must now identify all subclusters and link them to the correct classes
in the other domain.

Both domain adaptation phases must be successful to obtain a good
classification result. Observing the target classification accuracy at the
end is not sufficient to identify which of the two parts failed: a low
target accuracy combined with a high source accuracy could mean that
both clustering and mapping failed, but it could also mean that the
model found the right clusters but mapped them incorrectly between
domains.

4.2. Unsupervised domain adaptation requires additional assumptions

Consider a thought experiment with a balanced binary classification
problem, in which each class contains fairly homogeneous samples.
Given the in-class homogeneity, it is easy to find the correct clusters.
Linking those clusters across domains is more difficult: without addi-
tional information, it is impossible to say which cluster in the target
domain belongs to which cluster in the source domain. As a result,
domain adaptation has only a 50% chance of success. In unsuccessful
cases the clustering may still work, while the classification accuracy
may be close to zero because the clusters are linked incorrectly.

Observe that the problem in this simple example would not occur if
the classes were not balanced. Provided that the imbalance was similar
for both domains, the model could use the size of each cluster to learn
a correct mapping.

However, the result also depends on the assumption that the sam-
ples within each class are sufficiently homogeneous. In practice, this
will almost never be the case. For example, in some applications differ-
ent types of tissue might map to the same class. In segmentation tasks,
voxels near the edge of a structure may have a different appearance
from voxels located in the center, even if the whole structure belongs
to a single class, and the representation of near-edge voxels may even
vary with orientation. For this analysis, we therefore assume that each
class consists of multiple subclusters that are internally homogeneous.
This makes it more difficult to find the correct solution, since the
required class balance can be achieved with different combinations of
subclusters.

Consider an experiment in which the data is subdivided in 10
homogeneous subclusters of equal size. If the class balance in the source
domain is 80–20, that is, 8 and 2 subclusters per class, this can be
replicated in the target domain by mapping any combination of two
subclusters to the minority class. Since there is no way for the algorithm
to identify which combination is correct, the domain adaption is likely
to fail even if it discovers the clusters correctly.

In this paper, we argue that the conclusions for these thought
experiments can be extended to domain adaptation on real datasets. We
provide experimental verification of these specific results on synthetic
data in Section 7.2.

5. Exploiting domain-invariant properties

In the previous section, we argued that unsupervised domain adap-
tation is unlikely to learn correct mappings if there is no information
to link subclusters across domains. In practice, of course, this is too
pessimistic. Unlike the dataset in our example, most real-world datasets
will have some domain-invariant properties that can be exploited to
align domains.

The outcome of adversarial domain adaptation depends on the
initial representations, which usually depend on randomly initialized
weights. Since the training makes small, incremental changes to the
encoders to match distributions, it can increase similarity of clusters
that are already similar, but it is unlikely to swap entire clusters. If the
initial guess was correct, the final mapping is likely to be correct as
well.

Fortunately, the initial mapping and subsequent optimization are
not completely random, but depend on biases in the data and the
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model. If these biases are helpful, domain adaptation is more likely to
succeed. In this section, we introduce four domain-invariant properties
that are commonly seen in medical imaging data and may provide a
useful source of domain adaptation bias. We will then discuss how these
properties can influence the domain adaptation results implicitly.

5.1. Similar class imbalance

In Section 4.2, we argued that class imbalance might be used to
link domains with homogeneous classes. Many real-life datasets show
some class imbalance, but most are also heterogeneous. Our thought
experiment showed that this makes the imbalance less useful, because
the subclusters in the data can be combined in arbitrary ways to obtain
the required class balance. The experiments later in this paper confirm
this.

5.2. Similar intensities

If the average image intensities are consistent between domains,
e.g., if a class that is brighter in one domain is also brighter in the other
domain, this similarity can be used to learn the correct mapping be-
tween domains. This assumption often holds for images from the same
imaging modality. For example, CT images from different scanners will
have roughly similar intensity patterns.

This similarity can be exploited explicitly (models with shared
encoders are based on this assumption), but it can also affect the
domain adaptation implicitly. Here, we argue that the architecture and
initialization of the model can interact with intensity similarities in the
data to bias the model towards particular mappings. Given a random
initialization of the weights and a standard activation function, the
magnitude of the input intensities is reflected in the representation: on
average, a class with inputs around zero will produce smaller absolute
feature values in the encoder output than a class with larger input
values. This initial bias is consistent for all domain-specific encoders,
and can be used to map classes with similar intensity to similar feature
values.

5.3. Similar spatial structures

In applications with spatial inputs, source and target domains may
have similar spatial arrangements. For example, in MRI and CT images
of the same anatomy, the modalities produce images that show the
same anatomical structures, even if the appearance is different. We
argue that domain adaptation could exploit spatial similarities like
these if the models use convolution.

With convolutional encoders, the latent representation preserves the
spatial structure of the input. Even with a random initialization of the
weights, the output of convolutional encoders in different domains will
generate representations that are spatially similar. As long as the classes
have the same spatial arrangement in both domains, these similarities
could be exploited by the model to link the domains, even if the
structures themselves have a different appearance.

5.4. Similar local texture and intensity distributions

A fourth source of similarities is local texture. Especially in segmen-
tation tasks, texture information could be used to identify components
if the textures are similar across domains. Using convolution makes
the encoders sensitive to type and amount of texture: heavily textured
areas may produce a different convolution output than areas with a
lighter texture, even with random initialization of the weights. This
could bias the encoders to learn similar representations for similarly
textured areas, which would lead to a correct mapping if the texture
has similar meaning across domains. In medical imaging, this kind
of texture similarity can appear in multi-view images from the same
imaging modality, such as multi-modal MRI or smaller variations in
scanning protocol. On the other hand, cross-modality applications such
as MRI-to-CT could have different textures in each domain, which could
5

lead to a bias towards incorrect mappings.
6. How to measure domain adaptation success?

We employ several metrics to measure the performance of the
models, based on the two phases in the domain adaptation process
that we identified in Section 4.1: finding clusters in each domain, and
linking those clusters across domains.

6.1. Measuring the correctness of the mapping

Ultimately, the performance of domain adaptation is defined by the
classification accuracy on the target domain. In the experiments in this
paper, we compute the classification accuracy on the source domain
and on the target domain. Since the classifier is trained only on the
source domain, we expect the performance on the target domain to be
lower, but ideally the two should be as close as possible.

6.2. Measuring mapping quality

However, as discussed in Section 4.1, classification accuracy alone
does not provide the full picture, since it measures the combined
success of both domain adaptation phases. We use three metrics to
evaluate the clustering phase separately.

6.2.1. Compensated accuracy
A simple case of cross-domain confusion in a binary classification

task is that the domain adaptation method correctly finds the two
classes in the target domain, but maps them to the incorrect class in
the source domain. To measure this effect, we define the compensated
accuracy as max(accuracy, 100% − accuracy).

As an example, consider a binary classification task where for
setting A each run has a target accuracy of 50%, and where for setting
B each run has a random target accuracy of either 0% or 100%.
For both settings, the mean accuracy over multiple runs would be
50%. However, the results are clearly not the same: in experiment A,
the classification completely fails to identify the classes, whereas in
experiment B, the classes are separated correctly, but are sometimes
mapped incorrectly between the domains. The compensated accuracy
discriminates between these two cases: the mean compensated accuracy
of setting A is 50%, while the mean for setting B is 100%.

6.2.2. Mapping confidence
In more complicated problems with heterogeneous classes, we can

assume that each class is made up of several subclusters. We define
a domain adaptation confidence score that measures whether the do-
main adaptation model correctly identifies the subclusters in the data,
independent of whether they are assigned to the correct class.

The metric is defined using subcluster labels. We first compute the
subcluster confusion matrix CM and the class balance CB:

CM(𝑌 , 𝐶) =
∑

𝑖
𝐼(�̂�𝑖 = 𝑌 , 𝑐𝑖 = 𝐶), (4)

CB(𝑌 ) = 1
𝑁

∑

𝑖
𝐼(𝑦𝑖 = 𝑌 ), (5)

where 𝐼(⋅) is the indicator function, 𝑌 ∈ 0, 1 is a binary class, 𝐶 is a
subcluster, 𝑁 is the number of samples, and �̂�𝑖, 𝑦𝑖, 𝑐𝑖 are the predicted
class, the ground-truth class, and subcluster of sample 𝑖, respectively.
We then compute the class-balanced weighted confusion matrix WCM
and the class difference CD:

WCM(𝑌 , 𝐶) = CM(𝑌 , 𝐶)∕(2 ⋅ CB(𝑌 )) (6)

CD =
∑

𝐶
WCM(0, 𝐶) − WCM(1, 𝐶). (7)

Finally, we compute the confidence as

Confidence =
∑

max(WCM(𝑌 , 𝐶)) − |CD| . (8)

𝐶 𝑌
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The confidence score ranges between 0% and 100%. If the model
identifies all subclusters correctly (i.e., samples from one subclus-
ter are all assigned to the same class), the confidence score will be
100%, independent of the correctness of the classification. If the model
achieves no clustering (e.g., samples from one subcluster are equally
distributed over the two classes), the score is 0%. For a dataset with
two homogeneous classes, the confidence is equal to the compensated
accuracy.

Computing the confidence score requires a subcluster label for
each sample in the target domain. Since these labels are not available
in an unsupervised domain adaptation setting, this metric cannot be
applied in practical applications, but we include it as a measure in our
experiments to gain insight in the behavior of the algorithms.

6.2.3. Linear CKA
At the level of the encoder outputs, we compute the representation

imilarity using linear CKA (centered kernel alignment, Kornblith et al.,
019). Linear CKA measures the content-based feature similarity while
llowing for differences in representation, giving an indication of how
uch information is shared by both domains. The method is often used

o compare the feature representations of different networks trained
n the same data, but we use it to compare representations of paired
amples across domains. We refer to Kornblith et al. (2019) for the
ull definition. In our experiments, the linear CKA ranges from 0 (no
lignment) to 100 (complete alignment).

. Experiments and results

.1. Implementation

We used neural networks to implement the domain-specific en-
oders 𝐹src and 𝐹tgt, the classifier 𝐺, and the domain discriminator
. The architectures of these networks are described in the following

ections. In some experiments, we varied the level of the intermediate
epresentation: we used the same set of layers for 𝐹 + 𝐺 combined,
ut changed how they are divided between the encoders 𝐹 and the
lassifier 𝐺 (Fig. 3). The discriminator and classifier were optimized
ith a binary cross-entropy objective, using a gradient reversal layer
etween the discriminator and the encoders to implement the adver-
arial objective. All models were implemented in PyTorch1 and trained
sing the Adam optimizer until convergence. Detailed architectures and
yperparameters are shown in Appendix.

.2. Experiments with synthetic data

.2.1. Data and architecture
We constructed a synthetic, binary classification problem with 10

nput features, 𝐱 ∈ R10, and generated samples for two domains with
dentical or different input representations ( Table 1), according to the
ollowing settings:

• For ‘‘Two −1∕ + 1’’, we constructed a problem with two clus-
ters: samples [−1,−1,−1,−1,−1,−1,−1,−1,−1,−1] for class 0 and
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for class 1 in both domains (i.e., both do-
mains received the same input).

• The variant ‘‘Two −1∕ + 1, inverted’’ used the same type of sam-
ples, but we inverted the labels in the target domain: [−1,… ,−1]
corresponded to class 1 and [1,… , 1] to class 0, simulating a very
strong difference between domains.

• Similarly, ‘‘Two 0∕1’’ and ‘‘Two 0∕1, inverted’’ used samples
with values [0,… , 0] and [1,… , 1] with equal or swapped classes,
respectively.

1 The source code for our experiments is available at https://vantulder.net/
ode/2023/uuda/.
6

Table 1
Synthetic datasets.
Datasets with two clusters used a feature vector filled with the same value. Datasets
with ten clusters used a one-hot encoding with the feature corresponding to the cluster
set to 1. Uniformly distributed noise was added to all features.

Synthetic dataset Clusters Source Target

Two −1∕ + 1 2 −1∕ + 1 −1∕ + 1
Two −1∕ + 1, inverted 2 −1∕ + 1 +1∕ − 1
Two 0∕1 2 0∕1 0∕1
Two 0∕1, inverted 2 0∕1 1∕0
Ten 10 One-hot One-hot

• Finally, ‘‘Ten’’ included samples with one-hot encoding, repre-
senting 10 different clusters: from [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] to
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. In our experiments, we assigned each clus-
ter to one of the output classes, depending on the required class
balance: for example, we assigned 2 clusters to class 0 and 8
clusters to class 1 to simulate a 20 − 80 class balance.

or all settings, we added random noise to all features, sampled from
uniform [−0.5, 0.5] distribution. This created many unique samples,
ithout introducing class overlap. All experiments used the same,
ery simple architecture with linear encoders and decoders (Appendix,
ig. A.4).

.2.2. Results
We ran the experiment described in Section 4.2 with the synthetic

atasets. With homogeneous and balanced classes (experiment ‘‘Syn-
hetic two −1∕ + 1, Balanced 50–50’’ in Table 2), the model obtained
perfect classification accuracy on the source domain. On the target

omain, however, the average classification accuracy was much lower.
ooking closer, we observed that the target accuracy in individual runs
as either 0% or 100%, while the compensated accuracy is always
00% for both domains. This confirmed our earlier prediction that the
odel would easily find the clusters in the data, but would be unable

o reliably find the correct link between domains.
Next, we tried an experiment with unbalanced classes (experiments

‘Synthetic two −1∕+1, Unbalanced 20–80’’ and ‘‘— 80–20’’). The class
mbalance helped the model to find the correct mapping, resulting in a
erfect target accuracy in all runs. As hypothesized in Section 4.2, class
mbalance was not sufficient in datasets with heterogeneous classes.

hen we performed the same experiment with heterogeneous classes
experiments ‘‘Synthetic ten’’), we saw that the model failed to learn
good target classification. The high confidence scores indicate that

he model was able to find the subclusters, but was unable to link
hem correctly between domains. We confirmed this by inspecting the
onfusion matrices (Appendix, Table A.6).

Finally, we found that the domain adaptation was sensitive to the
epresentation of the input features. We repeated the experiments with
omogeneous classes, but switched the input features from {−1,+1}
o {0, 1} (experiments ‘‘Synthetic two 0∕1’’). With these input values,
ven with balanced classes, the model learned a perfect accuracy on
he target domain in almost all runs. We explain this surprising result
ith the bias predicted in Section 5.2: the representation of the data

nteracted with the model, introducing a bias that caused the model to
earn the same representation for both domains. We found confirmation
n the results for experiments with inverted target features (experiments
‘Synthetic 0∕1, inverted’’), in which the models reliably learned the
ncorrect mapping.

.3. Experiments with MNIST digits

.3.1. Data
We used the 28 × 28-pixel MNIST2 digit images with intensities

caled to [0, 1], using the original training and test splits. We converted

2 http://yann.lecun.com/exdb/mnist/

https://vantulder.net/code/2023/uuda/
https://vantulder.net/code/2023/uuda/
http://yann.lecun.com/exdb/mnist/
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Fig. 2. MNIST datasets used in the experiments. The target domain is either the same
as the source (MNIST), contains inverted images (MNIST inverted), or contains flipped
images (MNIST flipped). The required class balance (20–80, 50–50, 80–20) is obtained
by combining MNIST digits into two classes.

the original 10-class problem into a binary classification task by group-
ing the digits {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9} (Fig. 2). To simulate a 20–80
or 80–20 class imbalance, we respectively classified {0, 1} vs {2, 3,… , 9}
and {0, 1,… , 7} vs {8, 9}. In all cases, we used the original digit labels
to compute our subcluster-based confidence metric.

We performed experiments with three variations for the target
domain (Fig. 2): 1. standard, with original images, similar to the source
domain; 2. inverted, with inverted intensities (1−the original intensity)
to remove intensity-based similarities; 3. flipped, with images horizon-
tally and vertically mirrored to remove most of the spatial similarities
between domains.

7.3.2. Architectures
We used a convolutional network with domain-specific encoders

(Fig. 3, see the Appendix for full details: Fig. A.5). For the spatial
encoder models, we joined the domain-specific encoders at the final
spatial layer, just before global pooling. This gave the domain adap-
tation access to the final spatial feature maps. For the dense encoder
models, we joined the encoders just after the global pooling layer,
which meant that the domain adaptation method did not receive any
spatial information.

7.3.3. Results
The results in Table 3 show that the domain adaptation model

relied on spatial and intensity similarities to link the domains. In all
experiments, the models with spatial encoders achieved a higher target
accuracy than the models with dense encoders. The spatial encoders
failed when they were applied to a data with a flipped target domain,
because there were no spatial similarities to rely on. For digits that
look similar when flipped (6 and 9), the similarities can even work
to confuse the model further. At the same time, the models with
spatial encoders were able to learn with large intensity shifts: the target
accuracy on a target domain with inverted images was similar to that
on standard images. However, the linear CKA scores were lower, which
suggests that the representation still depended on intensity information.

The dense encoders had a low target accuracy on the standard do-
main with balanced classes, but showed a reasonably high confidence.
This indicates that they could still find some clusters in the data. The
models failed completely when the target images were inverted, which
shows that they relied on intensity similarities to link the domains.
7

Fig. 3. Overview of the four architecture variants used in the experiments. For each
architecture, the diagram shows the location of the shared representation (yellow)
where the output of the two encoders is linked. The spatial encoder architectures join
the two domains at a spatial representation level. The dense encoder architecture joins
the two domains after the first fully connected layer. The posterior join architecture
joins the domains just before the final activation function. The network shown here is
an example: see the Appendix for the architecture in each experiment.

Surprisingly, the linear CKA scores of the dense encoder model
dropped when the target images were flipped. This is counter-intuitive,
because these models did not receive any spatial feature maps. We sus-
pect this could be evidence for our fourth bias (Section 5.4): the early
convolution layers encoded local texture information that influenced
the later, global feature representations.

7.4. Experiments with brain MRI and cardiac CT/MRI

We present demonstrations on two medical imaging datasets: on
brain MRI and on cardiac CT/MRI. We think it is likely that subclusters
as discussed in this paper appear in any realistic dataset. However,
to properly evaluate and observe the behavior, we required datasets
with known subset labels. We created these datasets by combining
multiple classes to create a binary classification task, where each class
contains multiple subclasses, and then used the original class labels as
the subclusters in our analysis.

7.4.1. Brain MRI dataset: BRATS
Our first demonstration uses brain MRI scans from the BRATS 2015

dataset (Menze et al., 2015). This brain tumor segmentation dataset
includes four MRI sequences (T1, T1 with contrast, T2, FLAIR) and
manual segmentations of four tumor components (necrosis, edema,
non-enhancing tumor, and non-enhancing tumor). We extracted 2D
patches of 15 × 15 pixels, labeled with the class of the center pixel and
balanced to have an equal number of samples per class. We defined a
binary classification problem by combining the BRATS labels into two
classes: necrosis/edema and non-enhancing/enhancing tumor, which
roughly corresponded to the outer and inner part of the segmentation,
respectively. We used the original class labels as the subclusters in our
analysis.
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Table 2
Results for experiments with synthetic data, showing mean validation performance averaged over 25 models.
Models were trained to convergence. Sparkline plots show the distribution of results for individual runs.

Accuracy (%) Compensated accuracy (%) Confidence

Source Target Source Target Source Target

Synthetic two +1∕ − 1
Unbalanced 20–80 100.0 100.0 100.0 100.0 98.9 99.1
Balanced 50–50 100.0 64.0 100.0 100.0 99.1 99.3
Unbalanced 80–20 100.0 100.0 100.0 100.0 98.8 98.9

Synthetic two +1∕ − 1, inverted target
Unbalanced 20–80 100.0 100.0 100.0 100.0 99.1 99.1
Balanced 50–50 100.0 40.0 100.0 100.0 99.0 99.0
Unbalanced 80–20 100.0 100.0 100.0 100.0 98.8 99.0

Synthetic two 0∕1
Unbalanced 20–80 100.0 99.9 100.0 99.9 99.3 98.1
Balanced 50–50 100.0 92.0 100.0 100.0 99.4 99.2
Unbalanced 80–20 100.0 99.2 100.0 99.2 99.2 94.8

Synthetic two 0∕1, inverted target
Unbalanced 20–80 99.6 58.4 99.6 66.2 98.2 43.4
Balanced 50–50 100.0 4.0 100.0 100.0 99.2 99.0
Unbalanced 80–20 100.0 96.0 100.0 96.0 98.9 79.2

Synthetic ten
Unbalanced 20–80 100.0 72.2 100.0 72.2 98.9 98.9
Balanced 50–50 100.0 47.6 100.0 65.3 99.3 98.1
Unbalanced 80–20 100.0 68.8 100.0 68.8 99.0 98.7
Table 3
Results for experiments with MNIST data, showing mean validation performance averaged over 25 models.
Models were trained to convergence. Sparkline plots show the distribution of results for individual runs.

Accuracy (%) Confidence Linear CKA

Source Target Source Target Target

MNIST, spatial encoder
Unbalanced 20–80 99.6 98.2 97.9 92.2 95.7
Balanced 50–50 98.7 97.3 95.4 92.0 99.6
Unbalanced 80–20 99.3 89.3 97.4 46.8 66.5

MNIST, dense encoder
Unbalanced 20–80 99.3 79.2 97.4 78.1 40.2
Balanced 50–50 98.8 53.4 95.4 71.7 32.1
Unbalanced 80–20 99.2 66.5 97.1 76.8 33.7

MNIST inverted target, spatial encoder
Unbalanced 20–80 99.6 96.4 97.9 93.9 74.7
Balanced 50–50 96.7 96.6 91.7 91.7 74.7
Unbalanced 80–20 99.2 99.2 97.0 97.2 78.6

MNIST inverted target, dense encoder
Unbalanced 20–80 99.4 66.9 97.5 33.6 34.9
Balanced 50–50 97.5 48.8 94.5 31.1 20.4
Unbalanced 80–20 97.7 61.9 91.4 54.2 14.5

MNIST flipped target, spatial encoder
Unbalanced 20–80 99.6 80.2 98.1 29.9 52.5
Balanced 50–50 96.4 59.6 92.7 56.0 39.4
Unbalanced 80–20 98.0 75.3 94.3 66.4 36.8

MNIST flipped target, dense encoder
Unbalanced 20–80 99.4 77.9 97.4 77.3 53.0
Balanced 50–50 91.2 51.0 80.2 53.4 18.3
Unbalanced 80–20 99.3 65.5 97.2 77.9 24.0
7.4.2. Cardiac CT/MRI dataset: MM-WHS
Our second demonstration uses CT/MRI scans from the Multi-

Modal Whole Heart Segmentation dataset (MM-WHS, Zhuang and Shen,
2016). This heart segmentation dataset includes unpaired CT and MRI
scans for 40 patients (20 CT and 20 MRI). Following Al Chanti and
Mateus (2021), we used the ground-truth labels for four classes: left
ventricle myocardium, left ventricle blood cavity, left atrium blood
cavity, and ascending aorta.

We extracted 2D patches of 32 × 32 pixels, labeled with the class
of the center pixel and balanced to have an equal number of samples
per class. For our analysis, we converted this to a binary classification
8

problem by grouping left atrium and left ventricle in one class, and
ascending aorta and left ventricle myocardium in the other.

The experiments explored four domain adaptation scenarios: CT-to-
MRI, MRI-to-CT, CT-to-inverted-CT, and MRI-to-inverted-MRI. In this
dataset, the CT and MRI modalities provide complementary informa-
tion, which makes the domain adaptation more challenging (some
structures that are visible in CT are not visible in MRI, and vice versa).
The experiments with inverted target domains avoid this complication
(the source and target domains contain the same information), which
makes it easier to observe the behavior of the domain adaptation
algorithm.
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Table 4
Results for experiments with BRATS data, showing mean validation performance averaged over 25 models.
Models were trained to convergence. Sparkline plots show the distribution of results for individual runs.

Accuracy (%) Confidence Linear CKA

Source Target Source Target Target

BRATS, spatial encoder, early join
Balanced 50–50 73.9 62.7 65.6 57.0 61.4

BRATS, spatial encoder, late join
Balanced 50–50 73.9 49.6 69.1 45.6 4.3

BRATS, dense encoder
Balanced 50–50 77.4 51.3 66.9 45.3 2.4

BRATS, posterior join
Balanced 50–50 77.5 50.5 69.3 46.2 0.5
Table 5
Results for experiments with MM-WHS data, showing mean validation performance averaged over 25 models.
Models were trained to convergence. Sparkline plots show the distribution of results for individual runs.

Accuracy (%) Confidence Linear CKA

Source Target Source Target Target

MM-WHS, spatial encoder, early join
CT to MRI 61.1 55.7 45.8 23.9 74.9
MRI to CT 74.2 50.6 60.8 7.2 54.4
CT to inverted CT 60.2 60.1 43.6 41.5 74.8
MRI to inverted MRI 79.8 78.6 72.5 68.9 80.0

MM-WHS, spatial encoder
CT to MRI 61.9 49.3 54.5 14.1 45.2
MRI to CT 76.7 50.4 62.4 3.4 29.9
CT to inverted CT 58.0 49.9 31.9 0.8 72.6
MRI to inverted MRI 79.5 47.4 73.1 37.5 39.6

MM-WHS, dense encoder
CT to MRI 59.5 50.2 44.4 15.5 47.0
MRI to CT 67.2 50.4 35.5 2.1 18.3
CT to inverted CT 57.2 50.1 30.1 1.4 67.1
MRI to inverted MRI 78.4 50.2 66.6 26.5 41.8

MM-WHS, posterior join
CT to MRI 57.0 49.9 27.0 3.5 19.8
MRI to CT 58.6 50.0 19.1 0.0 12.4
CT to inverted CT 56.1 50.0 23.0 0.0 59.1
MRI to inverted MRI 55.3 50.0 10.3 0.0 20.0
7.4.3. Architectures
We compared four models, all based on the same architecture but

joining the source and target branches at different levels (Fig. 3, see
the Appendix for full details: Figs. A.6 and A.7 for BRATS, Figs. A.8
and A.9 for MM-WHS). The spatial encoder, early join model joins the
representations at an early spatial level (after the first pooling layer).
This makes it relatively easy to join the domains if the domains are
fairly similar, but also limits the complexity of the transformations that
can be modeled. The spatial encoder, late join model joins the represen-
tations before the global pooling layer. This allows the model to learn
more complex transformations, supporting larger differences between
domains, but the increased complexity will also make it more difficult
to learn the correct transformation. Because the representations are
joined before global pooling, this architecture can still exploit spatial
similarities. The dense encoder model joins the representations after
lobal pooling, removing spatial information. The posterior join model
oins the domain-specific branches only at the level of the final output.
his model has the least information, and must link the domains based
n the posterior distributions.

.4.4. Results
Table 4 shows the results of these four models on the BRATS dataset.

his task was more complicated than those in our previous experiments.
he early-join spatial encoder achieved a reasonable target accuracy in
number of runs, but not all. The confidence and linear CKA scores

uggest that this model also had modest success at identifying the
lusters. The scores for the late-join spatial encoder and the non-spatial
9

odels were much worse. Neither the confidence, nor the accuracy
on the target domain were very good, indicating that the domain
adaptation failed to find clusters or link them between domains. The
linear CKA scores are very low, indicating that the models learned very
dissimilar representations.

Table 5 shows the results for the MM-WHS experiments. The adap-
tation between CT and MRI was challenging in both directions. The
adaptation to an inverted CT or MRI was easier, but still far from
perfect. Similar to the results for BRATS, the early-join spatial encoder
obtained the highest domain adaptation scores: the target accuracy,
target confidence, and linear CKA were higher for those models than
for the others. This is especially clear for the inverted target domains,
for which the early-join spatial encoder obtained target accuracies that
were very close to the source accuracies. There is a substantial variabil-
ity between results for different runs, illustrating the unpredictability
of the domain adaptation outcome. There is also a clear difference
between the scores on CT-to-MRI and MRI-to-CT, which suggests that
the intensity differences going from CT to MRI were more favorable to
the model than the reverse. On the other hand, the source accuracy on
the MRI-to-CT experiment was higher, which indicates that the domain
adaptation had a negative effect on the CT-to-MRI performance. Similar
to BRATS, the late-join, dense, and posterior models performed worse.

Overall, the results for the BRATS and MM-WHS dataset suggest
that spatial information was crucial for the models to learn a correct
mapping between domains. In addition, the results for MM-WHS sug-
gest that the domain adaptation process is sensitive to the intensity

differences between CT and MRI.
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Table A.6
Confusion matrices (%) for example runs on the synthetic ten dataset, with balanced (runs 1–3) or unbalanced (runs 4–6) data. Domain
adversarial learning finds the correct class balance, but creates random combinations of clusters to do so.
Run Prediction Clusters from source domain Clusters from target domain

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 Class 1 9 10 9 10 9 9 9 10 10 10
Class 2 10 9 10 10 9 9 10 9 9 10

2 Class 1 10 9 10 9 10 10 9 10 9 9
Class 2 9 10 9 9 9 9 9 9 10 10

3 Class 1 10 10 9 9 9 9 10 10 9 9
Class 2 10 10 9 9 9 10 10 10 9 10

4 Class 1 10 9 10 10
Class 2 9 9 10 10 10 9 9 10 9 9 9 10 10 9 10 10

5 Class 1 9 9 10 10
Class 2 10 10 10 10 9 9 9 10 10 9 9 10 10 9 9 9

6 Class 1 9 9 9 9
Class 2 9 9 10 9 10 9 10 9 9 10 9 10 10 10 9 10
Fig. A.4. Network architecture for the synthetic experiments.

. Discussion

In this paper we explored the limitations of unsupervised domain
daptation, using adversarial learning to learn domain-invariant repre-
entations. We addressed a common domain adaptation scenario where
abeled training data is available for the source domain but not for the
arget domain, and where there are no paired samples that can be used
o learn correspondences between domains. In this setting, adversarial
omain adaptation attempts to learn a domain-invariant representation
y aligning the source and target distributions in the latent feature
pace. We showed that this unsupervised distribution matching may
ead to incorrect results, because there is no guarantee that similar
amples in different domains will be mapped to similar latent represen-
ations. However, we also observed that domain-invariant properties
f the data can introduce a bias that helps the model find the correct
apping. We identified four types of similarities that regularly occur

n medical images.

.1. Unsupervised domain adaptation without paired samples is flexible but
npredictable

In our experiments, we used models with domain-specific encoders.
sing domain-specific encoders instead of a single, shared encoder
llows the model to accommodate large differences between domains.
his is convenient if the domains are very different, because the en-
oders can learn a domain-specific mapping for each domain. In com-
10

arison, a model with a single encoder is restricted to extracting
domain-invariant features that have a similar appearance in both do-
mains.

The flexibility afforded by the domain-specific encoders comes at
a cost: without labeled target data or paired samples, it is difficult to
link the domains correctly. In Section 4, we discussed that there are
many possible ways to map samples between domains, and there is no
guarantee that the model will automatically find the correct solution.
The synthetic experiments in Section 7.2 showed a clear example of
this problem: the models learned a random mapping that was either
completely correct or completely wrong.

8.2. Similarities between domains may help or hinder the domain adapta-
tion process

Despite the lack of guarantees, unsupervised domain adaptation can
still succeed if the domains are sufficiently similar. In Section 5, we
discussed four domain-invariant properties that are commonly seen
in medical imaging data, and which may provide a useful source of
domain adaptation bias:

• The model can use the class imbalance to identify classes, if this
is similar between the source and target domains. This is more
likely to work in datasets with fairly homogeneous classes, such
as our synthetic example.

• The model can match classes based on average intensity, if this is
similar in both domains. We saw evidence for an intensity-based
bias in the experiments with synthetic and MNIST data, as well
as on the CT/MRI scans in the MM-WHS dataset.

• The model can use the large-scale spatial similarities to match
classes. This is sensitive to rotations and inversions, but can be
very powerful if the images in both domains have a similar spatial
structure. The convolutional feature extraction layers preserve the
spatial arrangement of the input, if the encoding branches are
joined at a spatial level. We observed that spatial information was
important in our MNIST, BRATS, and MM-WHS experiments.

• The model might use local textures to match classes based on
the strength of the textures in the image. This requires that
the textures are comparable between domains, which might be
difficult in more complex tasks, such as between CT and MRI.
This effect is more difficult to measure, but we saw signs of this
in the confidence scores of the dense encoders in some of our
experiments.

Since many medical datasets exhibit some of these similarities, the
domain adaptation process may be biased towards learning the cor-
rect mapping. Many domain adaptation approaches from the medical
imaging literature rely on these similarities between domains explicitly,
either by using an architecture with shared encoders or by introducing
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Fig. A.5. Network architectures for the MNIST experiments. The point of the division between domain-specific encoders and the shared classifier depends on the experiment.
additional constraints in the domain adaptation process. However, we
found that these assumptions are also used implicitly in a model with
domain-specific encoders.

8.3. Limitations and practical consequences

The internal behavior of domain adaptation methods is difficult
to observe in practice. Our experiments on synthetic and MNIST data
provided useful insights in the process, but the models and data were
simpler than those in most real-world applications. The relatively ho-
mogeneous data allowed us to compute the subcluster-based metrics
required for our analysis, but real data will be more heterogeneous and
usually comes without subcluster labels. Our experiments on BRATS
and MM-WHS used more realistic data, but were less transparent.

The observations in this paper were made on models using domain-
specific encoders. While this allows a very flexible mapping between
domains, it also makes it harder to learn a correct mapping. In contrast,
models with shared encoders may be more likely to find a correct
mapping if the domains are somewhat similar, but may have problems
with larger differences between domains.
11
Our experiments on medical imaging datasets are based on patch-
wise classification models. This resembles the pixel-wise classification
of a segmentation task and is sufficient for our analysis, but is not
competitive with the performance of more advanced state-of-the-art
models. For example, it is likely that a specialized segmentation net-
work such as a U-Net-like architecture (Ronneberger et al., 2015) could
obtain a better segmentation result by improving the spatial consistency
of the segmentation, but this would require the domains to be spatially
similar.

In practice, there is often some form of spatial similarity between
medical images from different sources, because they share similar
anatomical structure. For applications where this can be ensured, a
model that exploits these spatial similarities can often provide superior
results. Image-to-image translation methods are a popular type of these
methods, for example by using cycle consistency (Zhu et al., 2017),
by including a segmentation objective (Wang and Zheng, 2022), or by
using style transfer to separate content and appearance features (Yang
et al., 2019; Chen et al., 2020b, 2021b).

Despite these limitations of our experiments, we believe that most of

our conclusions also apply to more advanced models. Since there are no
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Fig. A.6. Network architecture for the BRATS experiments with spatial encoders. The point of the division between domain-specific encoders and the shared classifier depends on
he experiment.
uarantees that unsupervised domain adaptation works in the general
ase, its success for specific applications must mean that the models
xploit some underlying similarities in the data. The four assumptions
iscussed in Section 5 suggest what those similarities could be. We
elieve that many medical imaging tasks satisfy some or all of these
ssumptions, and suspect that this is why domain adaptation often
ucceeds.

It is important to be aware of these properties when applying
omain adaptation to a new dataset. Even if the assumptions are not
xplicitly encoded in an auxiliary learning objective or constraint, they
ay still affect the outcome through implicit biases in the models. We
ould also like to note that this is not unique to domain adaptation at
feature level. Image-to-image translation methods such as CycleGAN,
hich constrain the translation to maintain the global spatial structure
f the translated images, will face similar problems when translating
12

ocal textures and intensities.
9. Conclusion

Learning unsupervised domain adaptation from unpaired samples
is an ambitious goal, and to some extent it is surprising that it works
at all. In this paper, we argued that successful unsupervised domain
adaptation relies on similarities between domains. It is important to
recognize these implicit assumptions, because they may influence the
domain adaptation result. We explored several types of similarity that
are common in medical images, and found that they can indeed help to
push the domain adaptation in the right direction. Identifying potential
implicit biases is a key step in obtaining reliable results.

However, even if those assumptions are satisfied, a correct domain
adaptation is not guaranteed. In our experiments on the BRATS and
MM-WHS datasets, unsupervised domain adaptation failed for anything

but the simplest case. In practice, we suspect that unsupervised domain
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he experiment.
daptation can work well if domains are already similar, but needs
dditional constraints if they are not.
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Appendix. Implementation details

All experiments were implemented with PyTorch. In all exper-
iments, domains A and B were trained with independent training
samples from the same distribution. For the synthetic experiments, we
used an infinite stream of random samples. For the MNIST experiments,
we used the official training and test split.

For the BRATS experiment, we used the high-grade glioma subset
and split the data in separate training, validation and testing sets,
keeping samples from the same subject in a single subset. We used
80 subjects for training domain A, 80 subjects for training domain
B, 30 subjects for validation, and 30 subjects for testing. For each
subject, we selected patches centered on pixels from the ground-truth
segmentation, while maintaining the class balance.

For the MM-WHS experiment, containing 40 patients with 20 pa-
tients for CT and 20 patients for MRI, we split the subjects for each

modality in groups of 10/5/5 subjects for training, validation, and
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esting. Similar to BRATS, we selected patches centered on pixels from
he ground-truth segmentation, while maintaining the class balance.

Our aim was to identify scenarios where domain adaptation could
otentially work, but was unable to link the two domains. Conse-
uently, we selected hyperparameters based on the results on domain
, while checking the confidence on domain B to ensure that the
daptation did not map all samples to a single class. Using the se-
ected hyperparameters, we ran 25 experiments with different random
nitializations to obtain the results shown in the tables.

We fixed the weight of the classification term in the learning objec-
ive to 𝜆 = 0.1 for all experiments. For the discriminative, we chose
14

class v
one of 𝜆disc ∈ {0.3, 0.2, 0.1, 0.01, 0.001, 0.0001} based on the performance
on the source domain.

The learning rate was chosen from {0.001, 0.0005, 0.0001, 0.00001}.
or the synthetic experiments, we used 0.001 for all experiments. For
NIST, BRATS, and MM-WHS, we used 0.001, 0.0005, 0.0001 depending

n the setting, but all three values gave similar results.
We optimized the models using Adam with a minibatch size of

28, for 200 epochs (MNIST), 150 epochs (MM-WHS), or 100 epochs
other experiments). This was sufficient for all networks to converge.
e report the results at the end of the final epoch.
The source code for these experiments is available at https://
antulder.net/code/2023/uuda/.

https://vantulder.net/code/2023/uuda/
https://vantulder.net/code/2023/uuda/
https://vantulder.net/code/2023/uuda/
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on the experiment.
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