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Abstract. Performance of automated tissue classification in medical
imaging depends on the choice of descriptive features. In this paper, we
show how restricted Boltzmann machines (RBMs) can be used to learn
features that are especially suited for texture-based tissue classification.
We introduce the convolutional classification RBM, a combination of the
existing convolutional RBM and classification RBM, and use it for dis-
criminative feature learning. We evaluate the classification accuracy of
convolutional and non-convolutional classification RBMs on two lung CT
problems. We find that RBM-learned features outperform conventional
RBM-based feature learning, which is unsupervised and uses only a gen-
erative learning objective, as well as often-used filter banks. We show
that a mixture of generative and discriminative learning can produce
filters that give a higher classification accuracy.

1 Introduction

Most machine learning applications – for classification and other tasks, in medical
image analysis and elsewhere – do not work directly on the input data, but use
a higher-level representation instead. For example, when training a classifier for
images, the pixel values are mapped to features that simplify classification. Most
conventional approaches used in medical image analysis, such as filter banks of
Gaussian derivatives, wavelets or SIFT, are predesigned, general methods that
are not tuned for a specific problem or dataset.

Feature learning or representation learning [1] provides an alternative to pre-
designed filters, because it learns a new representation from the data. Ideally,
this data-derived representation discards irrelevant information and preserves
only those details that are useful for the intended task. By varying the objective
function of the feature learning method, it might be possible to tailor the features
to a specific application, such as classification. Because these features have been
optimized for a specific classification problem, they may provide a classification
result that is better than that of predesigned filter banks.

In this paper, we discuss the restricted Boltzmann machine (RBM), a repre-
sentation learning method that is popular in computer vision but still little-used
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in medical image analysis. An RBM is a probabilistic graphical model that learns
the probability distribution of the input data and a latent representation of that
data. Because the size of this latent representation is limited, the RBM learns a
concise representation that still captures most of the important information.

There are two ways to use RBMs in a classification problem. The standard
RBM is an unsupervised model without label information. It learns a represen-
tation that can be used as the input for an external classifier. This approach
has previously been used to model lung CT [2] and brain MR [3] images. The
second option is a classification RBM [4], an extension of the standard RBM that
includes labels and can be used for classification. Like standard RBMs, classifica-
tion RBMs can be trained with a purely generative objective that optimizes the
joint probability distribution of inputs and labels. Classification RBMs, however,
can also be trained with a discriminative objective that optimizes the posterior
probability of the label. A discriminative objective can improve classification
results, because it helps the RBM to focus on modeling the inter-class variation
that is relevant for classification. An RBM trained with only a generative learn-
ing objective might waste effort on modeling the intra-class variation in the data,
which does not improve the classification. For example, in tissue classification in
medical images, the model should represent the subtle differences between tissue
types, rather than the more obvious differences between patients.

Specifically designed to model images, convolutional RBMs [5–8] use a weight-
sharing approach borrowed from convolutional networks. Convolutional weight-
sharing reduces the number of weights and adds some translational invariance to
the model. Like standard RBMs, convolutional RBMs are unsupervised models.
We introduce the convolutional classification RBM, a combination of the convo-
lutional RBM with a classification RBM. We use this convolutional classification
RBM in our texture classification experiments. To our knowledge, the combina-
tion of convolution and classification RBMs has not been investigated before,
and the application of classification RBMs is new within medical imaging.

In this paper, we evaluate convolutional and non-convolutional RBMs as
classifiers and as feature learners, on two lung CT classification problems. In
particular, we are interested in the influence of the label information and the
learning objective on the classification performance. We test if the classification
RBM learns better features than the standard RBM. To do this, we compare the
results of the standard RBM and the classification RBM, for different mixtures
of discriminative and generative learning.

2 Restricted Boltzmann Machines

Standard RBM. A restricted Boltzmann machine (RBM) models the prob-
ability distribution over a set of hidden nodes h and visible nodes v. We use
binary hidden nodes, hj ∈ {0, 1}, and real-valued visible nodes with a Gaussian
distribution [9]. The joint probability distribution P (v,h) is determined by a
set of weights and biases. Each visible node vi has an undirected connection with
weight Wij to each hidden node hj . Each visible node vi has a bias bi and each
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hidden node hj has a bias cj . These parameters define the energy function

E (v,h) =
∑
j

(vi − bi)
2

2σ2
i

−
∑
i, j

vi
σi

Wijhj −
∑
j

cjhj , (1)

where σi is the standard deviation of the Gaussian noise of visible node i. The
joint distribution of the input v and hidden representation h is defined as

P (v,h) =
exp (−E (v,h))

Z
, (2)

where Z is a normalization constant. The conditional probabilities for the hidden
nodes given the visible nodes and vice versa are

P (hj |v ) = sigm(
∑
i

Wijvi + cj) and (3)

P (vi |h ) = N (
∑
j

Wijhj + bi, σi), (4)

where sigm (x) = 1
1+exp(−x) is the logistic sigmoid function.

Classification RBM. The classification RBM [4] extends the standard RBM
with binary nodes that encode the label of the input. Each label node represents
one class, with yk = 1 if the sample belongs to class k and 0 otherwise. Like the
visible nodes, the label nodes have a bias dk and are connected to each of the
hidden nodes, with weight Ukj connecting label node yk to hidden node hj . The
energy function of a classification RBM with Gaussian visible nodes is

E (v,h,y) =
∑
j

(vi − bi)
2

2σ2
i

−
∑
i, j

vi
σi

Wijhj −
∑
j

cjhj −
∑
k, j

ykUkjhj −
∑
k

dkyk .

(5)

The energy function defines the distribution

P (v,h,y) =
exp (−E (v,h,y))

Z
(6)

and the conditional probabilities

P (hj |v,y ) = sigm(
∑
i

Wijvi +
∑
k

Ukjyk + cj) and (7)

P (yk |h ) = sigm(
∑
j

Ukjhj + ck). (8)

The visible and label nodes are not connected, so P (vi |h ) is unchanged from
the standard RBM. The posterior probability for classification is

P (y |v ) =
exp

(
dy +

∑
j softplus (cj + Ujy +

∑
i Wijvi)

)
∑

y∗ exp
(
dy∗ +

∑
j softplus (cj + Uy∗j +

∑
i Wijvi)

) , (9)

where softplus (x) = log (1 + exp (x)).
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Learning Objectives. The standard RBM optimizes the generative learning
objective logP (vt), the probability distribution of each input image t. The classi-
fication RBM can be trained with the generative learning objective logP (vt, yt),
which optimizes the joint probability distribution of the input image and the la-
bel. A classification RBM can also be trained with the discriminative objective
logP (yt |vt ), which only optimizes the classification and does not optimize the
representation of the input image. Larochelle et al. [4] suggest a hybrid objective

β logP (vt, yt) + (1− β) logP (yt |vt ), (10)

where β ∈ [0, 1] is the amount of generative learning. We will use this objective
with different values for β in our feature learning experiments.

Learning the Weights. RBMs are probabilistic models, so when given an in-
put, it is necessary to sample the activation of all nodes to find the new state
of the model. Gibbs sampling provides a way to make this sampling more ef-
ficient. Given the visible and label nodes, the new state of the hidden nodes
can be sampled using the distribution p (ht |vt, yt ). Then, keeping the hidden
nodes fixed, the new activation of the visible and label nodes can be sampled
from p (vt, yt |ht ). This can be repeated for several iterations, until the model
converges to a stable state. Gibbs sampling forms the basis for contrastive di-
vergence [9], a method that provides an efficient approximation for the gradient-
based updates to the weights. We use contrastive divergence and stochastic gra-
dient descent to optimize the weights in our RBMs.

Convolutional RBM. Designed to model images, convolutional RBMs [5–
8] use the weight-sharing approach from convolutional neural networks. Unlike
convolutional neural networks, convolutional RBMs are generative models and
can be trained in the same way as standard RBMs. In a convolutional RBM,
the connections share weights in a pattern that resembles convolution, with M
convolutional filters Wm that connect hidden nodes arranged in M feature maps
hm (Fig. 1). The connections between the visible nodes and the hidden nodes in
map m use the weights from convolution filter Wm, such that each hidden node
is connected to the visible nodes in its receptive field. The visible nodes share
one bias b; all hidden nodes in map m share the bias cm. With the convolution
operator ∗ we define the probabilities

P
(
hm
ij |v

)
= sigm

(
(W̃m ∗ v)ij + cm

)
and (11)

P (vij |h ) = N
((∑

m

Wm ∗ hm

)
ij
+ b, 1

)
, (12)

where W̃m is the horizontally and vertically flipped filter Wm, and · ij denotes
the pixel on location (i, j).

Convolutional RBMs can produce unwanted border effects when reconstruct-
ing the visible layer, because the visible units near the borders are only connected
to a few hidden nodes. We pad our patches with pixels from neighboring patches,
and keep the padding pixels fixed during the iterations of Gibbs sampling.
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Fig. 1. Schematic view of weight shar-
ing in a convolutional RBM. The hid-
den nodes are grouped in feature maps
h1, . . . ,hM . The weights of the connec-
tions are shared using the convolutional
filters W1, . . . ,WM .

.....................

feature maps h1,h2, . . . ,hM

.....................................

input image v

.....

labels y

.....

W1, . . . ,WM

.

U

Fig. 2. Schematic view of a convolutional
classification RBM. Convolution of the in-
put image v with the filter Wm gives the
hidden feature map hm. The activation of
each feature map is summed and connected
with the label nodes y with weights U.

Convolutional Classification RBM. We introduce a convolutional classifi-
cation RBM that includes visible, hidden and label nodes (Fig. 2) and can be
trained in a discriminative way. The visible nodes are connected to the hidden
nodes using convolutional weight-sharing, as in the convolutional RBM, and the
hidden nodes are connected to the label nodes, as in the classification RBM. In
our patch-based texture classification problem, the exact location of a feature
inside the patch is not relevant, so we use shared weights to connect the hidden
nodes and the label nodes. All connections from a label node yk to a hidden
node hm

ij in map m share the weight Ukm. The activation probabilities are

P (yk |h ) = sigm
(∑

m

Uym

∑
i,j

hm
ij + dk

)
and (13)

P
(
hm
ij |y

)
= sigm

((
W̃m ∗ v

)
ij
+
∑
k

Ukmyk + cm
)
. (14)

The probability for the visible nodes is unchanged from the convolutional RBM.

3 Experiments

3.1 Datasets and Problems

Airways. We show results for two classification problems on lung CT images.
In the first dataset we classify airway and non-airway patches, to detect airway
center points as a preprocessing step for airway extraction algorithms. We use
40 scans of 20 patients from the Danish Lung Cancer Screening Trial [10]. The
voxel size is approximately 0.78× 0.78× 1 mm. Using the output of an existing



52 G. van Tulder and M. de Bruijne

Fig. 3. First dataset. In the airway
dataset, we extract patches at the airway
centerline (green) and non-airway sam-
ples (red) close to the airway.

Fig. 4. Second dataset. Example from the
interstitial lung disease scans. The anno-
tation (right) shows an ROI (red) marked
as micronodules.

segmentation algorithm [11] to find the airways (Fig. 3), we extracted patches of
16× 16 pixels at the center point of airways with a diameter of 16 pixels or less.
For each airway patch, we create a non-airway sample by extracting a patch at
a random point just outside the outer airway wall. We selected a random subset
of 500 patches per scan. We use 15 subjects (30 scans, 15 000 patches) as our
training set and 5 subjects (10 scans, 5 000 patches) for testing.

Lung Tissue. The second dataset is a larger, publicly available dataset on
interstitial lung diseases (see [12] for a description). In this texture classification
problem with scans from 73 patients, we do patch-wise classification of five types
of lung tissue (healthy tissue: 22%, emphysema: 3%, ground glass: 16%, fibrosis:
15%, micronodules: 44%). The resolution varies between 0.4 − 1 mm, with a
slice thickness of 1− 2 mm and inter-slice spacing of 10− 15 mm. The dataset
provides hand-drawn 2D ROIs with labels (Fig. 4) for a subset of slices in each
scan. Following other work on this dataset [2,13], we extracted patches of 32×32
pixels along a grid with a 16-pixel overlap. We include a patch if at least 75%
of the pixels belong to the same class. We use 48 patients (8 165 patches) for
training and 25 others (4 265 patches) for testing.

3.2 Evaluation Procedure

We trained the RBMs with various learning rates until convergence. We report
the test accuracy of the RBM with the best accuracy on the training set. For the
airway dataset, the patches are centered at the center point of the airways. This
means that the features do not have to be translation-invariant, so we can use a
non-convolutional RBM. For the lung tissue classification, translation-invariance
is required, so we use convolutional RBMs on this dataset. After learning the
filters, we convolve the input patches with the filters and use an adaptive binning
method to generate one histogram per filter. We trained support vector machines
(SVMs) with linear and radial basis function (RBF) kernels on the concatenated
histograms, with 5-fold cross-validation on the training sets to optimize the SVM
parameters and number of histogram bins.
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Fig. 5. Two filter banks: Leung-Malik (left) and Schmid (right), generated with the
code from http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html.

3.3 Baselines

We compare the results of RBM-learned filters with several baselines (Table 1).
On the airway data, we compare with SVMs trained on the raw input pixels.
Raw input pixels do not work for the lung tissue classification problem, because
the texture classification needs translation-invariant features. We therefore use
convolution with random filters as a baseline for the tissue set. As the second set
of baseline results, we use two of the standard filter banks discussed by Varma
and Zisserman [14] (Fig. 5). The filter bank of Leung and Malik [15] is a set of
Gaussian filters and derivatives, with 48 filters of 16× 16 pixels. The filter bank
of Schmid [16] has 13 filters of 16× 16 pixels with rotation-invariant Gabor-like
patterns. For the airway dataset, we multiply the image patch with each filter
to get the feature vector. For the lung tissue data, we apply the filters using the
same procedure with convolution and adaptive histograms that we also use for
the RBM-learned filters.

Table 1 summarizes the baseline results for both datasets. On the airway
dataset, an RBF SVM trained with Leung-Malik filters gives a test accuracy of
90.5%, against 91.3% for an RBF SVM trained on the raw intensity values. On
the lung tissue dataset, Leung-Malik filters have the best performance at 64.1%.

For the lung tissue dataset, two earlier publications also give an indication
of expected classification results, although the differences in patch extraction
and train/test splits make a direct comparison with our results impossible. De-
peursinge et al. [13] use a set of near-affine-invariant feature descriptors based on
isotropic wavelet filters. Li et al. [2] use unsupervised, non-convolutional RBMs
at three scales to learn convolution filters. Both studies show a multi-class clas-
sification accuracy of approximately 77%.

3.4 Results

Airways. Fig. 8 shows the results of the RBM classification and of the SVM
classification on airway data, with non-convolutional RBMs with different num-
bers of hidden nodes (example filters shown in Fig. 6). The best RBM reaches an
accuracy on the test set of a little more than 89%. Discriminative learning im-
proves the RBM classification accuracy, although the difference becomes smaller
if the number of hidden nodes is larger.

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Fig. 6. Three filter sets learned from the airway data: 4, 36 or 100 filters of 16 × 16
pixels, learned with a mix of discriminative and generative learning (β = 0.01).

no labels β = 1.0 β = 0.1 β = 0.01 β = 0
generative generative + discriminative discriminative

Fig. 7. Filters learned on the lung tissue data. Sets of 16 filters of 10 × 10 pixels,
learned by non-convolutional RBMs on subpatches. RBM without labels (leftmost)
and classification RBMs for various mixtures of generative and discriminative learning.

Table 1. SVM classification accuracy on the test set with baseline features.

Features raw pixels Leung-Malik Schmid
SVM kernel linear RBF linear RBF linear RBF

Airways 89.30 91.28 90.10 90.50 83.88 85.40
Lung tissue not applicable 64.88 64.06 56.90 54.81

The results of SVMs using the RBM-learned features show a similar pattern.
At best, an RBF SVM with RBM-learned features achieves an accuracy of 90.3%
(36 filters, pure discriminative learning), comparable to that of the best filter
bank. In general, more discriminative learning produces features that give a
higher accuracy in the SVM. This difference is strongest if the number of hidden
nodes is small, when it is most important to specialize.

Lung Tissue. We trained non-convolutional RBMs and convolutional RBMs on
the lung tissue dataset, with different filter sizes and numbers of filters. (Training
a large convolutional RBM took up to three days.) On the lung tissue dataset, we
found the best SVM classification accuracy (77−78%) with filters learned with a
mixture of generative and discriminative learning (Fig. 9). The best learned fil-
ters outperformed both the standard filter banks and the random filters. Adding
label information, even with pure generative learning, often improved the results.
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RBF SVM (right) trained on the RBM-learned filters. The plot shows the effect of
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Fig. 9. Lung tissue classification results with the convolutional RBM, for different
filter sizes (columns) and numbers of filters (rows). Each subplot shows the RBM
classification accuracy (black) and linear SVM accuracy (blue) and RBF SVM accuracy
(red) for different β (horizontal axis). Horizontal blue and red lines show the SVM
accuracy with random filters.

Filters learned with pure discriminative or pure generative learning generally
showed a lower performance than those learned with a mix. In a visual inspec-
tion, we found that filters learned with a bit of generative learning seem to have
more visible structure (see, for example, the filters in Fig. 7).

We can also evaluate the classification accuracy of the RBM itself. The con-
volutional RBM had a maximum accuracy on the test set of 77.6%, with 16
filters of 10 × 10 pixels. In most cases, pure discriminative learning gave the
RBM with the best classification result.
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Table 2. Results of McNemar’s and Durkalski’s tests comparing the classification ac-
curacy on the lung tissue dataset, for linear SVMs with RBM-learned filters versus
random filters. ‘RBM’ and ‘random’ indicate the method with the highest mean accu-
racy. The p-values indicate the significance of the difference, according to both tests.

Filter size 5× 5 pixels 8× 8 pixels 10× 10 pixels
Filters 4 16 36 4 16 36 4 16 36

β = 0 RBM random RBM random random RBM random random random
McNemar 0.0000 0.0000 0.0434 0.0921 0.9202 0.4242 0.0000 0.5826 0.0671
Durkalski 0.1778 0.0867 0.6809 0.6273 0.1614 0.0864 0.2242 0.1848 0.2135

β = 0.01 RBM RBM RBM RBM RBM RBM RBM RBM RBM
McNemar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Durkalski 0.0014 0.2411 0.1680 0.2087 0.4775 0.5432 0.2614 0.6208 0.4958

β = 0.1 RBM RBM RBM RBM RBM RBM RBM RBM RBM
McNemar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0413 0.0000 0.0000 0.0000
Durkalski 0.2340 0.5124 0.3770 0.4374 0.9676 0.1917 0.2661 0.2302 0.8062

β = 1.0 RBM random RBM random RBM RBM random RBM RBM
McNemar 0.0000 0.8027 0.0000 0.0826 0.0049 0.0000 0.0195 0.0000 0.0000
Durkalski 0.1222 0.1732 0.9608 0.7709 0.5714 0.3185 0.7284 0.7086 0.6697

no labels RBM random RBM RBM RBM RBM RBM RBM RBM
McNemar 0.0000 0.0995 0.0000 0.0000 0.0005 0.0154 0.0000 0.0000 0.0000
Durkalski 0.0576 0.1390 0.5584 0.7621 0.4975 0.0985 0.1520 0.5676 0.5046

For a statistical evaluation of the RBM-learned filters, we compare the mean
accuracy of SVMs with RBM-learned features with the results of SVMs with
random features. We use two statistical tests to determine the significance of
the results. McNemar’s test is the usual test to compare two classifiers [17].
McNemar’s test, however, assumes that the samples are independent, and in our
case this assumption might not hold: our samples are patches from 25 scans,
and there might be correlations between samples from the same scan. There are
several extensions of McNemar’s test that allow for within-cluster correlations.
We follow the advice by Yang et al. [18] and use Durkalski’s test [19].

Table 2 shows the results of McNemar’s test and Durkalski’s test for all RBM
configurations. In most cases, the average performance with RBM-learned fea-
tures was higher than the performance of the best-performing baseline, the ran-
dom filters. According to McNemar’s test (which is too optimistic), many of these
differences would be significant. In cases where random filters had a higher mean
accuracy than RBM-learned filters, the p-value is generally higher and not signif-
icant. Durkalski’s test is far more conservative: almost none of the differences are
significant. But although the individual differences are not significant according
to these tests, the differences are mostly in favor of the RBM-learned features.
For example, features learned with mixed strategies (β = 0.1 and β = 0.01) had
the highest mean accuracy for all configurations. This promising result suggests
that RBM-based feature learning may provide an advantage.
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4 Discussion and Conclusion

We have shown how the classification RBM can be used to learn useful features
for medical image analysis, with a mean classification accuracy that is better than
or close to that of other methods. Using label information and discriminative
learning led to an improved performance. Although no significant differences
were found in these relatively small datasets, the results suggest that RBM-
learned filters have an advantage over random filters. It is interesting to see that
random filters performed better than two standard filter banks. The surprising
performance of random filters has been noted in the literature before [20].

Because the lung tissue data that we used in our experiments is highly
anisotropic and has 2D annotations only in selected slices, we chose to do fea-
ture learning and classification in 2D. However, given the right training data,
the methods discussed in this paper could easily be extended to 3D.

The accuracy of the classification RBM in most of our experiments came
close to that of an SVM classifier, but the SVMs usually achieved better results.
We have two possible explanations for this difference. One, there may be an
imbalance in the energy function, because there are many more connections
between the visible and hidden nodes than between the hidden and label nodes.
This might lead the model to over-optimize the representation at the cost of a
higher classification error. Using a discriminative learning objective might help
to prevent this. Two, although our results suggest that combining representation
and classification can help to learn better features, this combination might make
it harder to optimize the classification. Since the representation changes in each
update step, the classification weights need to change as well. It might help to
add a final training phase that only optimizes the classification weights, while
keeping the representation fixed.

Feature learning is usually done with a purely generative learning objective,
which favors a representation that gives the most faithful description of the
data. But this is not always the representation that is best for the goal of the
system. For example, classification may need more features that model inter-class
variation than features that model intra-class variation. We therefore argue that
it is important to use the right learning objective for feature learning. In this
paper, we found that the classification accuracy of SVMs using RBM-learned
features can be improved by including label information in the model and by
adding discriminative learning to the learning objective of the RBM.
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